Inhibiting p53 Acetylation Reduces Cancer Chemotoxicity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of Parkin reduces inflammatory arthritis by inhibiting p53 degradation

Parkin is associated with various inflammatory diseases, including Parkinson's disease (PD) and rheumatoid arthritis (RA). However, the precise role of Parkin in RA is unclear. The present study addressed this issue by comparing the development of RA between non-transgenic (non-Tg) mice and PARK2 knockout (KO) mice. We found that cyclooxygenase-2 and inducible nitric oxide synthase expression a...

متن کامل

p53 Acetylation: Regulation and Consequences

Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic ...

متن کامل

Acetylation Is Indispensable for p53 Activation

The activation of the tumor suppressor p53 facilitates the cellular response to genotoxic stress; however, the p53 response can only be executed if its interaction with its inhibitor Mdm2 is abolished. There have been conflicting reports on the question of whether p53 posttranslational modifications, such as phosphorylation or acetylation, are essential or only play a subtle, fine-tuning role i...

متن کامل

Skp2B attenuates p53 function by inhibiting prohibitin.

The F-box protein Skp2 and its isoform Skp2B are both overexpressed in breast cancers. Skp2 alters the activity of p53 by inhibiting its interaction with p300 and by promoting p300 degradation. Here, we report that Skp2B also attenuates the activity of p53; however, this effect is independent of p300, suggesting that another mechanism might be involved. Prohibitin, a protein reported to activat...

متن کامل

P53 suppresses ribonucleotide reductase via inhibiting mTORC1

Balanced deoxyribonucleotides pools are essential for cell survival and genome stability. Ribonucleotide reductase is the rate-limiting enzyme for the production of deoxyribonucleotides. We report here that p53 suppresses ribonucleotide reductase subunit 1 (RRM1) and 2 (RRM2) via inhibiting mammalian target of rapamycin complex 1 (mTORC1). In vitro, cancer cell lines and mouse embryonic fibrobl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cancer Research

سال: 2017

ISSN: 0008-5472,1538-7445

DOI: 10.1158/0008-5472.can-17-0424